

PREOMICS

iST-BCT Sample Preparation Kit 8x

Purified proteins & biological fluids

Introduction

Sample preparation is one of the essential steps of bottom-up proteomics. The PreOmics iST sample preparation kit is designed to assist researchers achieving best results with few sample preparation steps and little hands-on time. For sample-specific protocols and optimization contact bioassay@bioinnovations.in

Kit Contents

The kit contains everything to perform a complete sample preparation. It includes all chemicals to denature, reduce and alkylate proteins, as well as the enzymes to perform a tryptic digestion and a final peptide cleanup.

Component	Cap	Quantity	E	Buffer P	ropertie	es	Description	Storage
			Organic	Acidic	Basic	Volatile		
DIGEST		2x					Trypsin/LysC mix to digest proteins.	-20°C
RESUSPEND-BCT	\bigcirc	1x 2 mL				•	Reconstitutes lyophilized proteolytic enzymes.	RT
LYSE-BCT		1x 1 mL			•		Denatures, reduces and alkylates proteins.	RT
STOP		1x 1 mL	•	•		•	Stops the enzymatic activity.	RT
WASH 1		1x 2 mL	•	•		•	Cleans peptides from hydrophobic contaminants.	RT
WASH 2		1x 2 mL		•		•	Cleans peptides from hydrophilic contaminants.	RT
ELUTE		1x 2 mL	•		•	•	Elutes the peptides from the cartridge.	RT
LC-LOAD	\bigcirc	1x 1 mL		•		•	Loads peptides on reversed-phase LC-MS column.	RT
CARTRIDGE		8x					Cartridge for 1 to 100 μg protein starting material.	RT
WASTE		8x					2.0 mL tube for collecting waste after washing steps	s. RT
COLLECTION		8x					1.5 mL tube for collecting peptides after elution.	RT
ADAPTER		8x					Enables a cartridge to be placed into a tube.	RT

Pre-Requisites

Equipment

Common lab equipment is required for the sample preparation.

Quantity and Description

Optional: can be used to resuspend peptides.

PIPETTE	Careful sample handling and pipetting reduces contaminations and improves quantification.
SAMPLE	Biological fluids & therapeutic proteins. For other sample types contact PreOmics for adapted protocols.
HEATING BLOCK	Two heating blocks are recommended to support protein denaturation and digestion.
CENTRIFUGE	1.5/2.0 mL reaction tube centrifuges are required for loading, washing and elution.
SONICATOR	If the sample contains DNA, shear it by sonication (e.g. Diagenode Bioruptor®).
VACUUM EVAPORATOR	Vacuum manifolds evaporate volatile buffers from the eluate before LC-MS.

Procedure

ULTRASONIC BATH

1. LYSE		- 11	3. PURIFY Wash & Elute	
---------	--	------	------------------------	--------------------

Quantity: 1-100 µg protein starting material www.preomics.com 1 of 2

Method

1 LYSE

- 1.1. Add 50 μL **LYSE-BCT** to 1-100 μg of protein sample, place it in a HEATING BLOCK (95°C; 1,000 rpm; 10 min). Precipitation may occur. *NOTE1*
- 1.2. Optional: Spin down droplets (RT; max. 300 rcf; 10 sec).
- 1.3. If the sample contains DNA, shear it in a SONICATOR (10 cycles; 30 sec ON/OFF).
- 1.4. Use ADAPTER to place CARTRIDGE in WASTE tube. Label all tubes.
- 1.5. Transfer sample to CARTRIDGE and cool down (RT). Be careful not to damage the bottom layer of CARTRIDGE.

2. DIGEST

- 2.1. Add 210 µL **RESUSPEND-BCT** to **DIGEST** (1 tube for 4 reactions), shake (RT; 500 rpm; 10 min), pipette up/down.
- 2.2. Add 50 μL **DIGEST** to **CARTRIDGE** and place it in a pre-heated HEATING BLOCK (37°C; 500 rpm; 1 hour).
- 2.3. Add 100 μL STOP to CARTRIDGE (precipitation may occur), shake (RT; 500 rpm; 1 min / pipette up/down). *SP*

3. PURIFY

- 3.1. Spin **CARTRIDGE** in a CENTRIFUGE (3,800 rcf; 1 min). If needed, adjust time to ensure complete flow-through.
- 3.2. Add 200 μ L **WASH 1** \bigcirc to **CARTRIDGE**, repeat step 3.1.
- 3.3. Add 200 µL **WASH 2** to **CARTRIDGE**, repeat step 3.1. *SP*
- 3.4. Use ADAPTER to place CARTRIDGE in a fresh COLLECTION tube. Label all tubes.
- 3.5. Add 100 µL **ELUTE** to **CARTRIDGE**, repeat step 3.1., keep flow-through in **COLLECTION** tube.
- 3.6. Repeat step 3.5., keep flow-through in the same **COLLECTION** tube.
- 3.7. Discard CARTRIDGE and place COLLECTION tube in a vacuum evaporator (RT; until completely dry but not overnight).
- 3.8. Add **LC-LOAD** \bigcirc to **COLLECTION** tube. Aim for 1 g/L concentration (e.g. 100 μ L to 100 μ g protein starting material).
- 3.9. Sonicate **COLLECTION** tube in an ULTRASONIC BATH (5 min) or shake (RT; 500 rpm; 5 min). *SP*

NOTE1 Volumes of buffers can be adjusted according to protein starting amounts.

For even lower oxidation & deamidation rates and increased alkylation rate: reduce heating block temperature to 80°C and incubate samples 10-20 min.

Visit our FAQ website for more information: www.preomics.com/faq.

NOTE2 For optimal digestion efficency, do not store **DIGEST** resuspended in **RESUSPEND-BCT**, but use within one day.

SP - Storage Point: At this point, close the peptide containing tube or **CARTRIDGE** using silicon lid.

Peptides can be frozen at -20°C. Storage of peptides should not exceed two weeks at -20°C.

For extended storage, finish the protocol and store at -80°C.

Data analysis

Consider the following as fixed modifications in your database search:

MODIFICATION	DESCRIPTION	COMPOSITION	SPECIFICITY	MASS	UNIMOD #
ALKYKATION	Carbamidomethyl on cysteine	C ₂ H ₃ NO	[C]	+57Da	4

Please refer to www.preomics.com for our General Terms and Conditions.

Material: Purified proteins & biological fluids Quantity: 1-100 μg protein starting material Version 4.0 - For research use only